The role of mitochondria and mitochondrial DNA copy number in the human oocyte

Jus St. John

Centre for Genetic Diseases

HUDSON INSTITUTE OF MEDICAL RESEARCH

Declaration of competing interest

This work was primarily funded by:

OvaScience Inc., Waltham, MA, USA

National Health and Medical Research Council, Australia

Australian Pork Ltd , Australia

Research grants awarded to Jus St. John, Hudson Institute of Medical Research

Mitochondria exist in very different shapes, numbers and locations in different cell types

e Sila

Oocyte

hES cells

Sperm

Skin cell

Mitochondrial colonisation in differentiating human ES cells

B)

D)

St. John et al. Clon Stem Cell 2005; 7: 141-153

The mammalian mitochondrion

- 100 kcal/hour = 116W
- O₂ consumption 380 litres/day
- 65 kg ATP/day (\$3M worth!)

The mature mammalian mitochondrion

- Form highly structured networks fuse later during development
- Act as Ca²⁺ stores and regulators
- Initiate steroidogenesis
- Provide balanced free radical activity
- Regulators/mediators of apoptosis and necrosis
- Regulators of the epigenome (Fluxome)
- Vehicles for the transmission of mtDNA

Production of cellular energy

Pfeiffer et al. Science 2001; 292:504-7

Electron Transfer Chain

The two genetic compartments in a cell

- Nucleus (Chromosomal DNA)
- Mitochondrial DNA

The mitochondrial genome

mtDNA haplotypes

St. John & Tsai, 2016: <u>http://www.ivf-worldwide.com/vaoeh/chapters/</u> the-role-of-mitochondria-and-mitochondrial-dna-in-fertilisation-and-development-outcome.html

mtDNA haplotypes

- Confer an advantage or disadvantage to the individual
- Adaptation to warm and cold climates

(Ruiz-Pesini et al. Science 2004;303:223-26)

Growth and physical performance

(Nagao et al. Genes Genet Syst 1998;73:21-27)

Longevity

(Tanaka et al. Lancet 1998;351:185-6)

- Predisposition to and against age-associated disorders
 - Cancer (Kaipparettu et al. Ann N Y Acad Sci 2010;1201:137-46)
 - Diabetes (Hwang et al. *PLoS One* 2011;6:e22116)

mtDNA haplotypes

• Milk quality in cows

(Brown et al. J Anim Sci 1989;67:1926-32)

• Sperm motility in men

(Ruiz-Pesini et al. Science 2004;303:223-6)

Fertility in cows

(Sutarno et al. Theriogenology 2002;57:1603-10)

Fertility in pigs

(El Shourbagy et al. Reproduction 2006;131:233-45)

Strongly influence cellular differentiation

(Kelly et al. Stem Cells 2013: 31; 703-716)

Outcomes related to cloning

(Bowles et al. Stem Cells 2008; 26:775-782)

Mutation and deletion of the mitochondrial genome

- Series of pathogenic maternally inherited mtDNA mutations and deletions that lead to a number mtDNA diseases:
 - LHON; NARP; MERRF; Leigh Syndrome
 - 70 to 80% mutant load
 - 1:5000 to 1:10000
 - 1:200 women are carriers
- Poorly packaged
 - Susceptible to mutation and deletion
 - 1-2% heteroplasmy in all individual (Ye et al. PNAS 2014; 111: 10654–9)
 - Increase with age (Payne & Chinnery, BBA 2015; 1847 1347–53)
- Transgenerational transmission that is tightly regulated (Cagnone et al. *Genetics* 2016; 202: 931–944)

Distribution of mtDNA variant load in oocytes and early preimplantation embryos

Cagnone et al. Genetics 2016;202:931-944

Correlation of variant load with mtDNA copy number in offspring tissues

Cagnone et al. Genetics 2016;202:931-944

mtDNA copy number is strictly regulated during development

Mitochondrial transcription and replication

Factors associated with: Mitochondrial biogenesis Proliferation Acetylation / deacetylation

Sun & St. John, Biochem J 2016; 473:2955-71

Mitochondrial specific DNA polymerase γ (*PolgA*)

N = Notl; Hp = Hpall; M = McrBC

- Sensor between nucleus and mitochondrial genome
- Intragenic CpG island in exon 2 of PolgA.

PolgA is DNA methylated in a tissue specific manner

Kelly et al. Nucleic Acids Res 2012:40; 10124–10138

Tissue specific mtDNA copy number

Kelly et al. Nucleic Acids Res 2012; 40:; 10124–10138

mtDNA copy number in human oocytes

Santos et al. Fert Steril 2006; 85: 584-591

mtDNA copy number in unfertilised human oocytes

* = P < 0.05 ** = P < 0.02 *** = P < 0.001

Santos et al. Fertil Steril 2006; 85: 584-91

Cytoplasmic transfer results in heteroplasmic offspring

Proposed to enhance embryonic developmental outcome

Resulted in heteroplasmic offspring **3-parents**

Developmental disorders reported in human and mouse

Cohen et al. *Lancet* 1997; **350:** 186-7 *Brenner et al. Fertil Steril* 2000; **74:** 573-8 Barritt et al. *Reprod Biomed Online* 2001; **3:** 47-48 Acton et al. *Biol Reprod* 2007; **77:** 569-76

BCB identifies fertilisable and non-fertilisable oocytes

El Shourbagy et al. Reproduction 2006; 131: 233-45

mtDNA copy in maturing and MII oocytes

Differential mitochondrial clustering between BCB⁺ and BCB⁻ oocytes

Depletion of mtDNA during IVM

Autologous mitochondrial supplementation

Mitochondria isolated from BCB⁺ sister oocytes

El Shourbagy et al. Reproduction 2006; 131: 233-45

Higher mtDNA copy numbers in developmentally competent oocytes

• Comparison of MII oocytes (T-Test)

Minimum threshold of mtDNA copy number required for fertilisation

Supplementation with genetically identical mitochondria (mICSI) to overcome threshold

~ 800 copies of mtDNA

Mitochondria isolated from BCB⁺ oocytes

Supplementation

Improvement in fertilisation and development of BCB⁻ embryos following mICSI

	Insemination	Total oocyte*/ MII number	% Fertilisation (total)	% Blastocyst/ Fert (total)	% Blastocyst/ Fert (±S.D)
BCB+	IVF	764*	58.4	23.7	20.6 ± 13.9
	ICSI	255	77.7	34.9	33 ± 15.3
	mICSI	98	62.2	31.6	31.5 ± 13.8
BCB-	IVF	507*	38.1	10.6	7.6 ± 5.8ª
	ICSI	136	59.9	22	23.9 ± 11.0 ^{a.b}
	mICSI	139	40.4	27.8	31.5 ± 15.6 ^b

Early rescue supports blastocyst development in BCB⁻ embryos

Improvement in development of BCB⁻ embryos following mICSI as evidenced by increased cell number

Genes differentially expressed between mICSI BCB⁻ and ICSI BCB⁻ blastocysts

- Most affected networks:
 - Cellular movement
 - Cellular development
 - Cellular movement
- Canonical pathways
 - PPAR signaling and CREB1
- Upstream regulators
 - Cell proliferation

Conclusion

Acknowledgements

Centre for Genetic Diseases

Gael Cagnone

Te-Sha Tsai

Yogeshwar Makanji

Pam Matthews

Mat McKenzie

Shahy El Shourbagy

Emma Spikings

Harvard, USA David Sinclair Michael Bonkowski UNSW Ashley Wong Lindsay Wu **Monash University Kirstin Elgass MHTP**

Jodee Gould

Chris Barratt

Jerry Schatten